2022 年度 渋谷教育学園幕張中学【理科】大問3

夜空を見上げると、さまざまな明るさの星が輝いています。注意深く観察すると、星には色の 違いがあることが分かります。カメラや望遠鏡を使うと、星の明るさや色がさらにはっきりと区 別できるようになります。

電球を使った実験を行い、夜空に輝く星について調べます。みなさんの家庭で使われている電球は、LEDのものが多くなってきましたが、白熱電球という種類の電球も使われています。白熱電球は点灯すると熱を発生します。

家庭や実験室で使われている電気の電圧は、100 V (ボルト)です。電圧を変える装置のことを変圧器と呼びます。電圧を変えると、白熱電球の明るさが変化します。

光が当たっている場所の明るさを照度といい、ルックスという単位を使います。照度が大きい ほど明るいです。照度は照度計で測れます。

<実験1>

図1のように装置を配置して電圧は一定のまま、白熱電球を点灯し、電球から照度計を少しず つ遠ざけて、距離と照度の関係を測定しました。すると、図2のような結果が得られました。

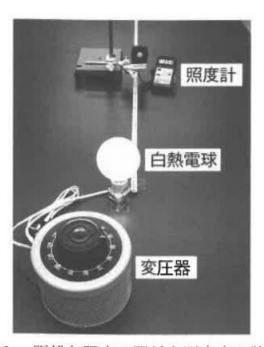
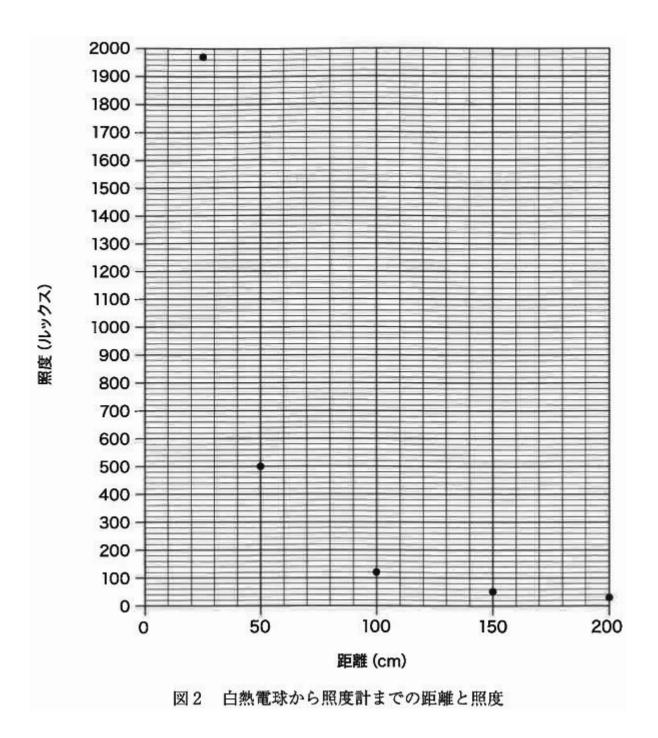



図1 距離と照度の関係を測定する装置

(1) 次の〔 〕にもっとも適するものを選びなさい。

電圧が一定ということは、白熱電球が出している光の量に変化がないということです。〈実験 1〉では、電球と照度計の距離が遠くなると、照度が①〔上昇・下降〕していくことがわかります。図 2より、電球から 100 c mの距離での照度は、50 c mの距離での照度にくらべると、約②〔1/2・1/3・1/4〕になっていることがわかります。この関係から、250 c mの距離での照度は、50 c mの距離での照度にくらべて、約③〔1/5、1/10、1/25、1/250〕になることが予想できます。

<実験2>

次に図3のように、白熱電球と照度計との距離を一定にして、電圧を変化させて照度を測定しました。結果を図4に示します。同時に、放射温度計を用いて電球の温度を測定しました。結果を図5に示します。

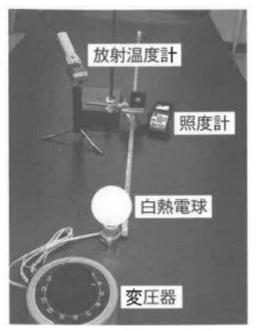
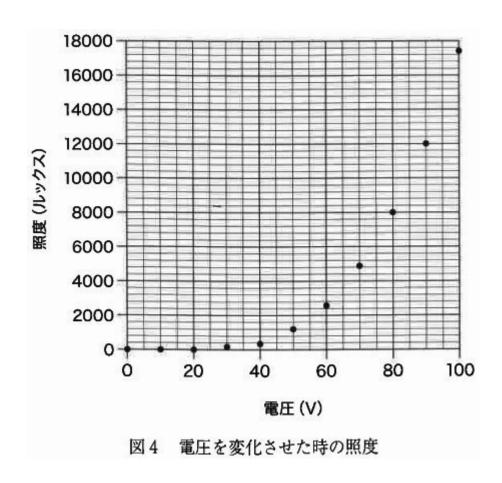



図3 電圧と照度、温度の関係を測定する装置

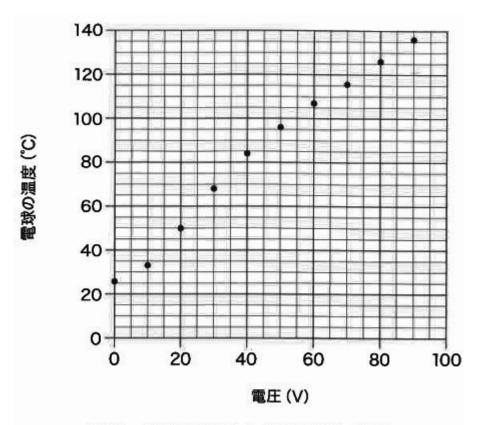


図5 電圧を変化させた時の電球の温度

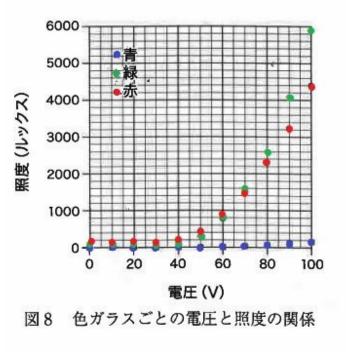
(2) 次の〔 〕にもっとも適するものを選びなさい。

電圧を上げると、照度が①〔上昇・下降〕します。白熱電球と照度計の距離は一定なので、電圧が大きいほど、電球は②〔明るく・暗く〕なることがわかります。電圧が $50\ V$ の時とくらべて、 $100\ V$ では、明るさは約③〔 $2\cdot 5\cdot 15\cdot 30$ 〕倍になっていることがわかります。電球の温度は、電圧を上げると④〔上昇・下降〕していくことがわかります。夜空の星が同じような性質ならば、明るい星は温度が⑤〔高い・低い〕ということになります。

図6の虹の写真からわかるように、太陽の光の中にはさまざまな色の光がふくまれています。 白熱電球も同様です。

テレビやスマートフォンの画面は、青色、緑色、赤色の光の強さを調節して、多くの色を表す 仕組みになっています。そこで、図7のような青色、緑色、赤色の色ガラスを用意しました。こ れらの色ガラスは、その色の光しか通さない性質をもっています。色ガラスを利用して、白熱電 球の光の特徴を測定しました。

図6 空にかかる虹


図7 青色、緑色、赤色の色ガラス

<実験3>

照度計に色ガラスをかぶせて、次の実験をしました。白熱電球との距離を一定に保ったまま、 電圧を変えて、それぞれの色ガラスごとに照度の測定をしました。すると、表1のような結果に なりました。これをもとにグラフを作ったのが図8、図9です。

電圧 (V)	青 (ルックス)	緑 (ルックス)	赤 (ルックス)
0	0	0	0
10	0	0	0
20	0	4	13
30	2	26	55
40	5	103	164
50	13	330	410
60	27	760	810
70	53	1600	1520
80	83	2620	2300
90	124	4060	3250
100	178	5900	4400

表1 色ガラスごとの照度の測定結果

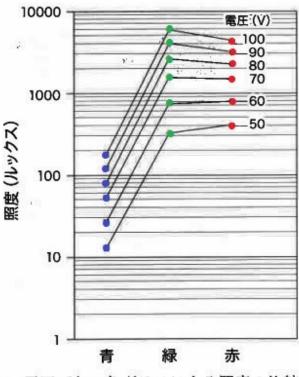


図9 電圧ごとの色ガラスによる照度の比較

(3)

〈実験3〉の結果から考えられる文として適切なものを2つ選びなさい。

ア:白熱電球からの光は電圧を高くすると、赤色に対して青色と緑色の割合が高くなっていく。

イ:白熱電球からの光は電圧を高くすると、赤色に対して青色と緑色の割合が低くなっていく。

ウ:白熱電球からの光は電圧を変化させても、赤色に対する青色と緑色の割合は変わらない。

工:電圧を変化させると、白熱電球の色が変わると考えられる。

オ:電圧を変化させても、白熱電球の色に変化はないと考えられる。

(4)

夜空に見える星の明るさや色の関係が、〈実験1、2、3〉と同じと考える。

次の文のうち適切なものを2つ選びなさい。

ア:赤い星と青い星は、温度は変わらないが、青い星ほど明るい。

イ:赤い星と青い星は、温度は変わらないが、赤い星ほど明るい。

ウ:赤い星は温度が低くて暗く、青い星は温度が高くて明るい。

工:赤い星は温度が低くて明るく、青い星は温度が高くて暗い。

オ:赤い星は赤色の光だけ、青い星は青色の光だけを出して輝いている。

力:星はさまざまな色の光を出しているが、距離が遠いと青く、近いと赤く見える。

キ:星はさまざまな色の光を出しているが、温度のちがいで出している色の割合が変わり、 ちがった色に見える。

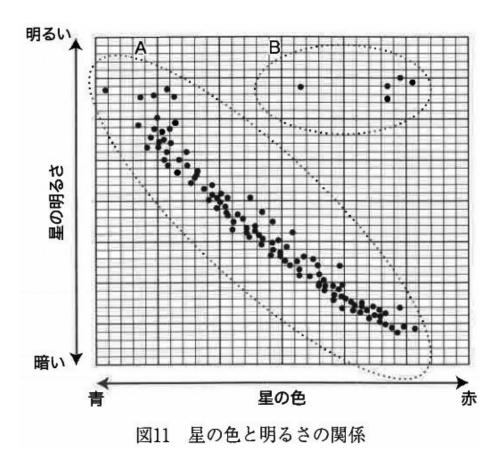

宇宙では、たくさんの星がせまい範囲に同時に誕生することがあります。地球から見ると、ほとんど同じ距離に星が集まっていることになります。このような星の群れを星団とよびます。図 10 は星団の例です。

図10 かに座 プレセペ星団 M44

<実験4>

まず色ガラスをつけないでプレセペ星団を撮影して、それぞれの星の明るさを求めました。次に色ガラスをつけて星団を撮影し、青い光と赤い光の割合を計算しました。図 11 には測定できた星団の一部の星を示しています。明るい星は上に、暗い星は下になります。左側にあるのは青い星、右側にあるのは赤い星となります。

(5) 欠の〔 〕に適するものを選びなさい。

プレセペ星団には、図 11 の中に点線で囲んだように、A と B の異なった性質をもつ星のグループが見られます。白熱電球の実験結果と似ているのは $_{\mathbb{Q}}$ 〔 $A \cdot B$ 〕グループと考えられます。A グループは $_{\mathbb{Q}}$ 〔青い・赤い〕星が明るいという特徴が見られます。ところが、B グループは明るくて、 $_{\mathbb{Q}}$ 〔青い・赤い〕星があります。

(6) プレセペ星団には、赤い色をした星が二種類あることがわかります。明るい赤い星と暗い赤い星です。明るい赤い星は、暗い赤い星と比べて、どのようにちがうと考えられますか。次の () を補い、文を完成させなさい。

明るい赤い星は、暗い赤い星と比べて()。