問題PDF
図のように、半径3cmで中心角が90°のおうぎ形と、
1辺の長さが3cmのひし形を組み合わせた図形を底面とする、高さが6cmの立体があります。
点Pは、1→2→3→4→5→6→7→8→9→1の順で線に沿って動きます。点Pが6cmの辺上を動くときの速さは、3cmの辺上を動くときの速さの2倍です。上のグラフは、点Pが進んだ時間(秒)と道のり(cm)の関係を表したものです。グラフのア、イ、ウの空欄にあてはまる数を入れなさい。
@解説@
グラフの意味を確認。
Pは1から順番に動き、1に戻ってくる。
グラフの原点がスタートの1で、最後がゴールの1。あいだは2~9。
グラフが急なところは6cm、緩やかなところは3cm。
Pが6cmの辺上を動くときは3cmの辺上を動くときの速さの2倍なので、
6cmと3cmの辺上を動く時間は同じだから、横軸は等間隔になる。
ウから攻める。
ウは1~4までにPが動いた距離。
6+3+3×2×3.14×1/4
=9+4.71=13.71cm(ウ)
イが中途半端な場所なので、先にアを処理する。
アは1周したPが動いた距離の合計。
長さは正確に!
図では奥行きが高さと同じ長さのように見えるが3cmです。
13.71+6+3+6+3+6+3
=40.71cm(ア)
扇形の弧を通る3-4間が曲者なので、そこを避けるために後半の5-1間を狙う。
このとき、Pが通る5辺はどれも時間が等しいので、各辺を通過する時間は、
(16.71-9.21)÷5
=7.5÷5=1.5秒
イはアに近いので、イの値はアから引き算すればいい。
14秒後から、Pが9に到着するまでの時間は、
16.71-14-1.5=1.21秒
8-9間でPは1.5秒で6cm移動するので、
?=6×1.21/1.5=4.84cm
したがって、40.71-3-4.84=32.87cm(イ)
ア…40.71、イ…32.87、ウ…13.71
難関中(算数科)解説ページに戻る
コメント