2020年度 豊島岡女子学園高校過去問【数学】大問2解説

(1)
2次方程式x2-5x-3=0の正の解の小数部分をaとするとき、
a(a+5)の値を求めなさい。

(2)
2m-1≦√m≦2mを満たす自然数nが2020個あるとき、
自然数mの値を求めなさい。

(3)
大小2つのさいころを振り、出た目をそれぞれa、bとします。
このとき、11a+8bの値が7の倍数となる確率を求めなさい。

(4)

上の図のように、平行四辺形ABCDの辺AB、BC、CD、DAを2:3に分ける点をそれぞれE、F、G、Hとします。線分AFと線分ED、BGの交点をそれぞれP、Qとし、線分HCと線分BG、EDの交点をそれぞれR、Sとします。このとき、四角形PQRSの面積は平行四辺形ABCDの面積の何倍ですか。


@解説@
(1)

2-5x-3=0に解の公式を適用。
x=(5±√37)/2
まず、√37の整数部分を考える。
√36<√37<√49だから、√37の整数部分は6。
5より√37の方が大きいので、『正の解』は(5+√37)/2。
(5+√37)/2の整数部分は、(5+6…)÷2=11…÷2=5…
小数部分a=正の解-整数部分=(5+√37)/2-5

a(a+5)
={(5+√37)/2-5}{(5+√37)/2-5+5}
={(√37-5)/2}{(√37+5)/2}
={(√37)2-52}/4=12/4=3

(2)
2m-1≦√n≦2m ←すべて2乗
(2m-1)2≦n≦(2m)2
2m-1と2mは連続する整数。
連続する2つの整数の平方数のあいだにある数を考えればいい。
留意すべきは、不等号≦にイコールがあること。
つまり、(2m-1)2もnに含まれる
たとえば、4と9の差は9-4=5個だが、4を含めると5+1=6個となる。
n=2020は(2m-1)2を含む個数なので、(2m)2と(2m-1)2の差は2019

(2m)2-(2m-1)2=2019
4m2-4m2+4m-1=2019
4m=2020
m=505

(3)
7の倍数の判定法は使えにくい(;´Д`)
地道に代入して調べていくが、余りに注目しよう。
11=7+4(余り4
8=7+1(余り1
余りの合計が7の倍数であれば全体で7の倍数。
たとえば、a=1のとき、
余り4×1+余り1×3=7だから、b=3となる。
a=2のとき、4×2+1×6=14→b=6
a=3のとき、4×3+1×2=14→b=2
a=4のとき、4×4+1×5=21→b=5
a=5のとき、4×5+1×1=21→b=1
a=6のとき、4×6+1×4=28→b=4
以上、6通り→6/36=1/6

(4)

平行四辺形は対辺の長さが等しく、辺を内分する比が同じ。
AF//HCED//BG
△AEP∽△ABQより、AP:PQ=AE:EB=2:3

△ADP∽△HDSに注目。
HS=×2/5=〇4/5
図形全体が点対称なので、対称的に考えてQF=〇4/5
分数がでてきたので、いったん比を整数に変換。
AP:PQ:QF=〇4/5

平行四辺形ABCDの面積を1として、上底+下底の和から面積比を計算する。
【平行四辺形ABCD→平行四辺形AFCH→四角形PQRS】
1×6/10×30/58=9/29
9/29倍
国私立高校入試解説ページに戻る

◆menu◆ 公立高校入試…関東圏メイン。千葉だけ5教科あります。%は正答率。
国私立高校入試…数学科のみ。ハイレベルな問題をそろえてみました。
難関中算数科…中学受験の要。数学とは異次元の恐ろしさ(;´Д`)
難関中社会科…年度別。暗記だけじゃ無理な問題がいっぱい!
難関中理科…物化生地の分野別。初見の問題を現場思考でこなせるか。
難問特色検査…英国数理社の教科横断型思考問題。
センター試験…今のところ公民科だけ(^-^;ニュース記事だけじゃ解けないよ!
勉強方法の紹介…いろいろ雑記φ(・・。)
QUIZ…☆4以上はムズいよ!
◆スポンサードリンク◆
株価が爆上げした『すららネット』様。


noteも書いています(っ´ω`c)
入試問題を題材にした読み物や個人的なことを綴っていこうと思います。
気軽にお立ち寄り下さい(*^^*)→サボのnote
サボのツイッターはコチラ→

コメントを残す

メールアドレスが公開されることはありません。

CAPTCHA