2018年度 栄光学園中学過去問【算数】大問4解説

1辺の長さが30cmの正方形の透明な3枚のガラス板A、B,Cがあります。図1のように、ガラス板はそれぞれ等分され、色のついている部分と色のついていない部分が交互になっています。

2枚のガラス板を重ねたとき、色のついている部分が重なっていると色は濃く見えます。例えば、ガラス板Bとガラス板Cを図1と同じ向きでぴったりと重ねると、図2のように色の濃く見える部分が4ヶ所あります。
 
(1)
固定したガラス板Aの上にガラス板Bを図1と同じ向きでぴったりと重ね、
ガラス板Bを右に秒速1cmで30秒間動かしていきます。


5秒後に色の濃く見える部分の面積の和を答えなさい。


ガラス板Bを動かしても、色の濃く見える部分の面積の和が変化しないときがあります。それは動かし始めてから何秒後から何秒後の間ですか。考えられるものをすべて求め、下の例にならって答えなさい。
(答え方の例)
3秒後から5秒後の間と、10秒後から13秒後の間の場合:(3~5)、(10~13)

(2)
固定したガラス板Aの上にガラス板Cを図1と同じ向きでぴったり重ね、ガラス板Cを右に秒速1cmで30秒間動かしていくとき、ガラス板Cを動かしても色の濃く見える部分の面積の和が変化しないときがあります。それは動かし始めてから何秒後から何秒後の間ですか。考えられるものをすべて求め、(1)②と同じように答えなさい。


@解説@
麻布で見かけたことある気がする(*’ω’*)w
ひたすら調査系でイライラmax!!(#`Д´)ノノ┻┻
(1)①

ここは確実に取りたい。
先に6の倍数ごとに目盛りをうち、左5cmから15cm、25cmに線をひく。
重なっているところの底辺の合計は9cm。
9×30=270cm2


しんどい~(´Д`)
捨て問の登場が早すぎる。

がんばりました(;´Д`)
だいたい2秒ごとに状況が変わる。
24秒後~30秒後は重なるところの面積が減っていくので除外。

ガラス板Aの色が付いている部分を左から①・②・③として、
重なっているところの面積の変化をみていく。
減少と増加が1つずつのところは変化がない。
よって、(2~4)、(6~8)、(10~12)、(14~18)、(20~24)。

(2)
前問の図を描けていることが、正解への前提条件。
ガラスCは、ガラスBでは空白であった真ん中に10cm分が追加される。
両サイドは30cmから20cmに短くなるが、
本問は面積の変化が問われており、両サイドの変化は前問と同じだから考えない
したがって、答えの候補は先ほどの解答に絞られる。
そのなかから、真ん中の10cm部分の変化に神経をとがらせる。

↑10cm部分に丸をつけてみた。
(2~4)では、②で減少する。
(6~8)では、②が減少して③が増加→変わらない。
(10~12)では、③の部分とフル被りで変わらない。
(14~18)では、③が減少する。
(20~24)では、右にフェードアウト済みなので変わらない。
よって、(6~8)、(10~12)、(20~24)。

どういう気持ちでこれを出したのかが気になるトコロ。
難関中(算数科)解説ページに戻る

◆menu◆ 公立高校入試…関東圏メイン。千葉だけ5教科あります。%は正答率。
国私立高校入試…数学科のみ。ハイレベルな問題をそろえてみました。
難関中算数科…中学受験の要。数学とは異次元の恐ろしさ(;´Д`)
難関中社会科…年度別。暗記だけじゃ無理な問題がいっぱい!
難関中理科…物化生地の分野別。初見の問題を現場思考でこなせるか。
難問特色検査…英国数理社の教科横断型思考問題。
センター試験…今のところ公民科だけ(^-^;ニュース記事だけじゃ解けないよ!
勉強方法の紹介…いろいろ雑記φ(・・。)
QUIZ…☆4以上はムズいよ!
◆スポンサードリンク◆
株価が爆上げした『すららネット』様。


noteも書いています(っ´ω`c)
入試問題を題材にした読み物や個人的なことを綴っていこうと思います。
気軽にお立ち寄り下さい(*^^*)→サボのnote
サボのツイッターはコチラ→

コメントを残す

メールアドレスが公開されることはありません。

CAPTCHA