2018年度 豊島岡女子学園中学過去問【算数】大問6解説

 1辺の長さが5cmの立方体ABCD-EFGHがあります。
また、辺CG上に点Pがあり、PGの長さは1cmです。
このとき、次の各問いに答えなさい。


(1)
辺BF上に点Qがあり、BQの長さが1cmです。
また、DH上に点Rがあり、2つのAP、QRは交わっています。
このとき、HRの長さは何cmですか。

(2)
辺BF、DH上に動く点S、Tがあり、2つの直線AP、STは交わっています。
その点をUとするとき、四角すいU-EFGHの体積は何cm3ですか。

(3)
辺CD上に点Vがあり、DVの長さが1cmです。
また、辺EF上に点Wがあり、2つの直線AP、VWは交わっています。
その点をXとするとき、四角すいX-EFGHの体積は何cm3ですか。


@解説@
面白い設問だが・・・難しい(´゚д゚`)
(1)

QRがで交わるときのHRを求めたい。
なんとなくは中点で交わっていそう…。

上からみると、は正方形の対角線の交点にある。
上から見る平面図では高さを無視し、APとQRの長さは異なるが、
APとQRが正方形の真ん中で交わるということは、はAP、QRの中点にある

立体でみると、面AEGC上にAP、面BFHD上にQRがあり、
APとQRの交点は、面AEGCと面BFHDの交線上にある→正方形の真ん中

面AEGCでは、A→Pで4cm下がるので、A→まで2cm下がる。
の高さは3cm
面BFHD上のも高さが3cm。
Q→で1cm下がるので、→Rも1cm下がる。
RH=3-1=2cm

(2)
SはBF上を、TはDH上を動くという…。
四角錘U-EFGHの体積を求めるためには、
Uから垂線を下ろしたときの高さが知りたい。
ということは、SとTが動いてもUの位置は変化しないのでは?と推測する。

立方体において、辺BFと辺DHは対辺である。
(1)のように、上からみた平面図ではAPとSTは正方形の対角線であり、
各々中点で交わるはず

上の図で、Sより下だと、STの中点がUより下にくるのでAPと交わらない。
T”より下だと、S”T’’の中点がUより下にくるのでAPと交わらない。
SとTは高さ1cm以上にあり、互いが反対側にあればSTはAPと中点Uで交わる

結局、Uは(1)のと同じ位置にある
→四角錘の高さは3cm。
よって、四角錘U-EFGHの体積は、5×5×3÷3=25cm3

(3)
難問です
((( ;゚д゚))

今までは上からみたときに2直線が正方形の対角線となり、
各々の中点で交わってくれたが、本問のVはDから1cmズレている:(っ`ω´c):
XはUのようにAPの中点ではない。
……かなり悩みました(;´~`)

AWとVPをひいてみる。
・・・なんか、△AXWと△VXPが相似っぽく見える。。。

(1)では、上からみるとAPとQRの交点が中点にあり、
上からみて1:1で、横からみても1:1だった。
ということは、立方体の内部にある直線を上から見たときの長さの比は
横から見たときの長さの比と同じになるのでは

左の図は、APとVWの位置関係を立方体の上面に写し取ったもの。
W→W’、X→X’、P→Cに移動。
真上から下へ視線を下ろしているので、W’とW、X’とXはかぶっており、
W’WとX’Xは底面に対して垂直で、互いに平行。
△W’WV∽△X’XVから、W’X’:X’V=WX:XV
△AX’X∽△ACPから、AX’:X’C=AX:XP

右の図は、APとVWの位置関係を立方体の正面に写し取ったもの。
A→B、W→F、X→X’’、V→Cに移動。
WFとXX’’は正面から見たときに線分として目に見えず、
奥行きとしてABやVCと平行である。
WF//XX’’//VCから平行線と線分の比で、FX”:X’’C=WX:XV
△APB∽△XPX’’から、BX’’:X’’P=AX:XP
このように、空間に浮かぶ2直線APとVWの位置関係は、2つの平面に写しとることができる。

求めたい四角錘の高さがわかるのは、正面から見た図。
Xから垂線をおろし、交点をYとする。
XYが四角錘X-EFGHの高さにあたる。
△BXF∽△PXDより、FX:XD=BF:PD=5:4
△XYF∽△DCFより、XY=5×5/9=25/9cm

したがって、四角錘X-EFGHの体積は、
5×5×25/9÷3=625/27cm3
*実際の入試では細かい説明を抜きにして、
前問の結果から上からや正面からの図に置き換えて相似を使ってもよいのでは?
と想像し、とりあえず計算して解答用紙に書いてみる…でよいと思う。

難関中(算数科)解説ページに戻る

◆menu◆ 公立高校入試…関東圏メイン。千葉だけ5教科あります。%は正答率。
難関中算数科…中学受験の要。数学とは異次元の恐ろしさ(;´Д`)
難関中社会科…年度別。暗記だけじゃ無理な問題がいっぱい!
難関中理科…物化生地の分野別。初見の問題を現場思考でこなせるか。
難問特色検査…英国数理社の教科横断型思考問題。
センター試験…今のところ公民科だけ(^-^;ニュース記事だけじゃ解けないよ!
勉強方法の紹介…いろいろ雑記φ(・・。)
QUIZ…☆4以上はムズいよ!
◆スポンサードリンク◆
株価が爆上げした『すららネット』様。


noteも書いています(っ´ω`c)
入試問題を題材にした読み物や個人的なことを綴っていこうと思います。
気軽にお立ち寄り下さい(*^^*)→サボのnote
サボのツイッターはコチラ→

コメントを残す

メールアドレスが公開されることはありません。

CAPTCHA