2019年度 青山学院中学過去問【算数】解説

(4)
1から9までの整数から7つ選んで、それぞれaからgとします。
下のような式が成り立つたとき、eは〔  〕、fは〔  〕、gは〔  〕です。
a×a=b c+d=a
c×e=f c+g=f

(5)
1Lサイズの牛乳パックの重さは50gです。
これを1個リサイクルすることで、二酸化炭素の排出量を23.4g削減できます。
また、二酸化炭素14kgは1本の杉の木が吸収する二酸化炭素と同じです。
ある年の国内の牛乳パックのリサイクル量は68.5千tでした。
この年の二酸化炭素削減量は、約〔  〕万本分の杉の木が吸収する二酸化炭素量に相当します。
(小数第1位を四捨五入すること

(7)
三角形ABCの面積は10cm2です。
図のように三角形ABCの辺CAをAの方に延長してCA:AD=1:2となるように
点Dをとります。同じように、AB:BE=1:3、BC:CF=1:4となるように
それぞれ点E、Fをとり、三角形DEFを作りました。
三角形DEFの面積は〔  〕cm2です。

(8)
図のように3つの円柱状の容器(ア)(イ)(ウ)があります。

底面の半径は、(イ)は(ア)の2倍、(ウ)は(イ)の1.5倍で、
高さは、(イ)は(ア)の1.5倍、(ウ)は(イ)の1.5倍です。
(イ)を満水にして空の(ウ)に何回か水を入れたところ、水があふれてしまいました。
このとき、あふれた水の量は(ア)の〔  〕杯分です。

(9)
ある中学校の生徒が一列に並んでハイキングコースを歩いています。
最後尾にいた守くんが1.8km先の先頭まで走って行ったところ、
9分で先頭に着くことができましたが、先頭にいた先生に最後尾に戻るよう指示されました。
そこで、守くんはその場で列が過ぎるのを待っていると、27分で最後尾になりました。
もし、守くんが行きと同じ速さで戻ったならば〔  〕分〔  〕秒で最後尾に着きます。

(11)
あるクラスで5点満点の国語と算数のテストを行ったところ、
得点の分布が下の表のようになりました。
国語の平均点が3.6点、算数の平均点が3.5点のとき、
AとBに入る人数は、A〔  〕人、B〔  〕人です。

(12)
図のように、中心角が90度のおうぎ形を点線で2回折りました。
(あ)の大きさは〔  〕度です。

(14)
表は、あるクラスの算数のテストの結果です。
このテストは第1問が10点、第2問が5点、第3問が5点の20点満点です。
第1問を正解した人は22人、第2問を正解した人は17人いました。

①第2問と第3問の両方を正解した人は〔  〕人です。
②第3問を正解した人は〔  〕人です。


@解説@
(4)
1~9の中で、a×a=bが成り立つ組み合わせを考える。
(a、b)=(2、4)(3、9)
c+d=aで、a=2だと1+1になり、c、dと別のアルファベットにならない。×
a=3、b=9確定
c+d=3となり、(c、d)=(1、2)(2、1)
c×e=fで、c=1だとe=fとなるから不適。
c=2、d=1確定
2×e=f、2+g=fで、残りの数字をあてはめる。
e=4、f=8、g=6

(5)
桁ミスに気をつけて計算するだけだが、苦手な人は多い。
68.5千t(牛乳パックリサイクル量)÷50g(牛乳パック1本)=リサイクルした牛乳パックの本数
これに23.4gをかければ、リサイクルで削減できたCO2の量となる。
それを÷14kgで杉の本数に換算して、÷1万で杉何万本かがでる。
68.5千t÷50g×23.4g÷14kg÷1万
=68.500.000.000÷50×23.4÷14.000÷10.000
=137×23.4÷14=228.9‥ →229万本
精神力が試される・・(( ;゚д゚))
大きな数は3桁ごとに点を打った方がいいかも。

(7)

補助線をひいて、サクサク調べていく。
△DEF=360cm2

(8)
基本レベルなのできちんと正解したい。
    ア:イ:ウ
半径 =1:2:3
底面積=1:4:9
高さ =1:1.5:2.25
体積 =1:6:20.25
イをウに入れると、3回まではセーフだが、4回目でこぼれる。
その量は、6×4-20.25=3.75
これは、アの3.75杯分。

(9)
旅人算。せっかく先頭にきたのに戻される(._.)
1800m÷(太郎の速さ-行列の速さ)=9分
太郎の速さ-行列の速さ=分速200m
行列の速さ=1800m÷27=分速200/3m
よって、太郎の速さ=200+200/3=分速800/3m
求める答えは、1800÷(太郎の速さ+行列の速さ)
=1800÷(800/3+200/3)=5・2/5=5分24秒


(11)
AとB以外のマスの合計を算出。
国語…1×2+2×4+3×5+4×10+5×11=122
算数…1×3+2×3+3×9+4×8+5×10=118
AB以外のマスの合計差が122-118=4点
Aは国算がともに3点のマス、Bはともに4点のマス。
ということは、AB以外のマスの合計差が、そのまま国語と算数の合計差となる。
国語と算数の平均点の差は0.1点。
平均の差×人数=合計の差
人数=4÷0.1=40人

国語の合計は、3.6×40=144点
AとBのマスの国語の得点は、144-122=22点
AとBの人数は、40-33(表をもとに地道に数える)=7人
3×A+4×B=22で、AとBの和が7になる組み合わせを求める。
A=6人、B=1人
処理手順が多いので、時間にとられる。。
後回しでも良いかな?

(12)
1回目は、扇形の中心角が孤の上にくるように折る。

半径と折り返しから、正三角形が現れる。
30-60-90°の直角三角形がみつかる。

2回目は波線の孤を半分に折り、
右下の点が1回目に折ったときの点に重なるようにする。
角の二等分線で15°。折り返しで(あ)を移動。
外角定理から、60+15=75°

(14)①
ラストに推論問題。
第1問~第3問をそれぞれ①、②、③とおく。
20点…全問正解→①②③=4
15点…①②or①③=13
10点…①or②③=8
5点…②or③=6
ベン図で情報整理。

↑こうなる。

①の円に注目すると、①だけ正解した人は、
22-13-4=5
②と③だけを正解した人は、8-5=3
よって、②と③を両方正解した人は7人。



②と③の合計(赤い枠)は、
13+4+3+6=26
ここから②を引いて、緑の斜線部分を求める。
26-17=9
③の正解者は、9+4+3=16人
難関中(算数科)解説ページに戻る

◆menu◆ 公立高校入試…関東圏メイン。千葉だけ5教科あります。%は正答率。
国私立高校入試…数学科のみ。ハイレベルな問題をそろえてみました。
難関中算数科…中学受験の要。数学とは異次元の恐ろしさ(;´Д`)
難関中社会科…年度別。暗記だけじゃ無理な問題がいっぱい!
難関中理科…物化生地の分野別。初見の問題を現場思考でこなせるか。
難問特色検査…英国数理社の教科横断型思考問題。
センター試験…今のところ公民科だけ(^-^;ニュース記事だけじゃ解けないよ!
勉強方法の紹介…いろいろ雑記φ(・・。)
QUIZ…☆4以上はムズいよ!
◆スポンサードリンク◆
CMで話題の『スタディサプリ』様。
月額1980円で有名講師の神授業が聞き放題!塾プラス+にどうぞ↓

noteも書いています(っ´ω`c)
入試問題を題材にした読み物や個人的なことを綴っていこうと思います。
気軽にお立ち寄り下さい(*^^*)→サボのnote
サボのツイッターはコチラ→

コメントを残す

メールアドレスが公開されることはありません。

CAPTCHA