2019年度 海城中学過去問【算数】大問4解説

(1)
図のように、1辺の長さが6cmの正方形ABCDがあります。辺AB,BC、CD、DAの真ん中の点をそれぞれE、F,G、Hとします。半径1cmの円Pの中心は、AB、BC、CD、DA、EG、HFの上をすべて動きます。このとき円Pの円周が通った部分の面積を求めなさい。

(2)
図のように、半径1cmの円Oがあります。半径5cmの円Qの中心は、円Oの内部と周上をすべて動きます。
このとき、円Qの円周が通った部分の面積を求めなさい。


@解説@
(1)
作図で決着がつきます。

9ヶ所に円を描き、軌跡を作図する。
すると、1cm四方の小窓が4つある

中にある6cmの正方形から4つの小窓をひく。
外側は1×6の長方形が4箇所、四隅は1つに統合すると半径1cmの円。
6×6-1×1×4+1×6×4+1×1×3.14=59.14cm2

(2)
半径5cmのQが、半径1cmの円Oの円周と内部を動く。

気をつけるべき点は、内側に円Qの円周が通らないスペースがあること
求積すべきところは、半径6cmの青い円から半径4cmの赤い円の間。
6×6×3.14-4×4×3.14
=(36-16)×3.14
=20×3.14=62.8cm2

もしくは、円Qを固定して円Oを動かすこともできる
(円Oを固定して円Qを動かす=円Qを固定して円Oを動かす)
こちらの方が作図がしやすい。
半径6cmの円から半径4cmの円をひくので、先ほどと同様の式になる。
難関中(算数科)解説ページに戻る

◆menu◆ 公立高校入試…関東圏メイン。千葉だけ5教科あります。%は正答率。
国私立高校入試…数学科のみ。ハイレベルな問題をそろえてみました。
難関中算数科…中学受験の要。数学とは異次元の恐ろしさ(;´Д`)
難関中社会科…年度別。暗記だけじゃ無理な問題がいっぱい!
難関中理科…物化生地の分野別。初見の問題を現場思考でこなせるか。
難問特色検査…英国数理社の教科横断型思考問題。
センター試験…今のところ公民科だけ(^-^;ニュース記事だけじゃ解けないよ!
勉強方法の紹介…いろいろ雑記φ(・・。)
QUIZ…☆4以上はムズいよ!
◆スポンサードリンク◆
CMで話題の『スタディサプリ』様。
月額1980円で有名講師の神授業が聞き放題!塾プラス+にどうぞ↓

noteも書いています(っ´ω`c)
入試問題を題材にした読み物や個人的なことを綴っていこうと思います。
気軽にお立ち寄り下さい(*^^*)→サボのnote
サボのツイッターはコチラ→

コメントを残す

メールアドレスが公開されることはありません。

CAPTCHA