スポンサーリンク

2019年度 筑波大附属中学過去問【算数】大問7~11解説

問題PDF
(7)

A、B、C、D、Eの5人のテストの得点について、次のことがわかっています。

・A、B、C、D、Eの5人の得点の平均は86点である。
・A、Bの2人の得点の平均は、D、Eの2人の得点の平均より5点高い。
・B、Cの2人の得点の平均は、D、Eの2人の得点の平均より2点低い。
・Dの得点は、Cの得点より4点低い。

Cの得点が84点のとき、A、Eの2人の得点の合計は何点ですか。

(8)
同じ大きさの立方体の積み木を積み上げて立体をつくりました。
下の図は、つくった立体を、真正面、真上の2つの方向から見たものです。
このように見える立体は、全部で何通りつくることができますか。

(9)
図1は、厚紙でつくられた立方体です。
この立方体を辺にそって切り開いたら、図2のようになりました。
図2のようになるには、立方体の辺をいくつ切ればよいですか。

(10)
点Pを通り、三角形ABCの面積を2等分する直線を、解答用紙にかき入れなさい。
 

(11)
次の図は、2つを合わせると立方体ABCD-EFGHになる立体を厚紙でつくったものです。
この立体の展開図において、四角形AJGKと三角形JFGを表したものを選びなさい。
ただし、J、KはBF、DHの中点とします。



@解説@
(7)
C=84点
D=84-4=80点

(A+B)÷2=(D+E)÷2+5 ←すべて2倍
(A+B)=(D+E)+10 …①
(B+C)÷2=(D+E)÷2-2 ←同じく2倍
(B+C)=(D+E)-4 …②
①、②から、(D+E)を基準にすると、(A+B)が(B+C)より14大きい
(A+B)=(B+C)+14
両辺からBを除外。A=C+14=80+14=94点

A~Eの平均が86点なので、A~Eの総和は86×5=430点
430-(94+84+80)=168 …B+E
①より、(A+B)=(D+E)+10
A=98、D=80は、〔A=D+18〕なので(右辺に+18)、
上の式を成り立たせるには、〔B+8=E〕をする(左辺に+8)
つまり、BとEの差は8でB<E。

BとEの和差がわかったので和差算。
B=(168-8)÷2=80点
E=80+8=88点
答えは、A+E=98+88=186点
*処理手順が多い。他に鮮やかな解法ありそう…。

(8)
正面から見ると、左右ともに2段。
上からみた図で考える

左は(1、1、1)がないから、2×2×2-1=7通り
右は(1、1)の組合せがないので、2×2-1=3通り
3×7=21通り

(9)

図2の展開図で、切れていない辺(面同士がつながるところ)は5本
立方体の辺は12本だから、切るべき辺は12-5=7本

@@
今年の栄光学園で詳しい設問が出題されています。

2019年度 栄光学園中学過去問【算数】大問2解説
問題PDF 立体のいくつかの辺を切って開いたときの展開図について考えます。 例えば、図1の立方体において、太線で示した7つの辺を切って開くと、図2のような展開図になります。 (1) 図3は正三角形4面で囲まれた立体です。 いくつかの辺を切っ...

立体から何本の辺を切れば平面に直せるか。一度は触れておきたいですね。

(10)

Cを通り、PBに平行な線をひき、ABの延長線との交点をC’とおく。
CC’は下に1マス、左に3マスの傾きで下がるので、C’は2マス外にある。
△CPBと△C’PBは等積変形で一緒。
ということは、△ABCと△AC’Pが等積になる。
AC’は横12マス分なので、AC’上で6マス目の点とPを結んだ線が答え。

(11)

四角形AJGKは、4つの合同な直角三角形の斜辺なので長さが等しい。
→四角形AJGKは菱形

対角線AGとJKの関係を考える。
JKを平行に下にズラすと、底面の正方形EFGHの対角線と同じ。
JK→FH→EGと視点を変える
AGとEGを比較すると、AG>EG
よって、AG>JKとなるから、エ。
難関中(算数科)解説ページに戻る

◆menu◆ 公立高校入試…関東圏メイン。千葉だけ5教科あります。%は正答率。
国私立高校入試…数学科のみ。ハイレベルな問題をそろえてみました。
難関中算数科…中学受験の要。数学とは異次元の恐ろしさ(;´Д`)
難関中社会科…年度別。暗記だけじゃ無理な問題がいっぱい!
難関中理科…物化生地の分野別。初見の問題を現場思考でこなせるか。
難問特色検査…英国数理社の教科横断型思考問題。
センター試験…今のところ公民科だけ。ニュース記事だけじゃ解けないよ!
勉強方法の紹介…いろいろ雑記
QUIZ…☆4以上はムズいよ!
サボのツイッターはコチラ→

コメント

タイトルとURLをコピーしました